Что означает ram?

Как посмотреть объем ОЗУ

Если вы хотите узнать, какой объем ОЗУ установлен в вашем телефоне или смартфоне, то для этого можно воспользоваться специальными приложениями, предоставляющими информацию об устройстве. Например, можно воспользоваться приложением AIDA64, которое доступно как на Android, так и на iOS.

Если у вас телефон на базе Android, то вам нужно запустить приложение AIDA64 и перейти в раздел «Система».

А в случае iOS нужно запустить приложение AIDA64 и открыть раздел «Memory».

Также вы можете просто ввести название вашего устройства в любую поисковую систему и посмотреть характеристики в интернете.

Назначение и принцип работы

Основным назначением RAM является хранение временных данных, необходимых компьютеру только во время его работы.

В эту память загружаются данные, которые будут выполняться процессором напрямую.

К ним относят исполняемые файлы (в первую очередь, с расширением .exe) и библиотеки, результаты различных операций, которые выполняются в процессе работы ПК, и коды нажатых клавиш  типа CapsLock, Ins и т.д.

Принцип работы RAM следующий:

  • Все ячейки памяти находятся в своих строках и столбцах;
  • На выбранную строку памяти приходит электрический сигнал.
  • Под действием сигнала открывается транзистор.
  • Присутствующий в конденсаторе заряд подаётся к нужному столбцу, подключённому к чувствительному усилителю;
  • Поток электронов, создаваемый разрядившимся конденсатором, регистрируется усилителем и приводит к подаче соответствующей команды.

Рис. 2. Общая схема обработки данных вычислительной техникой.

 Важно: При подаче электрического сигнала на определённую строку открываются все её транзисторы. Отсюда следует, что минимальным объёмом данных, который считывается из памяти, является не ячейка, а строка. . Из-за того что принцип действия RAM основан на полупроводниках, хранящиеся в этой памяти данные остаются доступными только при подаче электротока

Из-за того что принцип действия RAM основан на полупроводниках, хранящиеся в этой памяти данные остаются доступными только при подаче электротока.

При отключении напряжения питание обрывается, а все данные в ОЗУ полностью стираются.

Конструктивные исполнения DRAM

В зависимости от выполняемых задач модули динамической памяти DRAM выпускаются в различном исполнении:

Рис. 5. Память SIPP.

  • SIMM, модули в виде длинных прямоугольников с контактными площадками вдоль одной стороны и защёлками для установки. Самые распространённые версии – с 30 и 72 контактами. Объём такой памяти, которая тоже сейчас не выпускается, был равен 256 КБ и 1–128 МБ.
  • DIMM – платы, контактные площадки на которых располагаются с двух сторон. Прямоугольные пластины, так же как и модули SIMM, устанавливаются с помощью защёлок. Расположение микросхем может быть и односторонним, и двухсторонним, а количество контактов – до 288 (для DDR4).
  • SO-DIMM – те же модули DIMM, но уменьшенного размера, предназначенные для установки в небольших корпусах ноутбука или системных блоках с форм-фактором Mini-ITX. Эти же платы стоят в принтерах и других видах техники, которой требуется для работы оперативная память. Количество контактов может достигать 260 (SO-DIMM DDR4).

Рис. 6. Отличия модулей DIMM и SO-DIMM.

 Ещё один вариант DRAM – модули RIMM, которые из-за особенностей конструкции устанавливаются только парами, хотя сейчас практически не применяются. Память имеет 160, 168, 184 и 242 контакта. Существует уменьшенная разновидность этой «оперативки», SO-RIMM, предназначенная для портативных компьютеров.

Что делает RAM память?

Есть несколько способов, которыми ваш компьютер хранит данные. Например, на жестком диске или твердотельном накопителе вашего компьютера хранятся все программы и файлы вашей системы, пока вы их не удалите. Твердотельные накопители и жесткие диски могут хранить тонны данных, процессор вашего компьютера не может быстро получить к ним доступ.

Таким образом, компьютерная система использует оперативную память, чтобы служить буфером для более быстрого доступа к важным данным с вашего SSD или жесткого диска. Хотя ОЗУ не может содержать почти столько данных, сколько стандартный жесткий диск или твердотельный накопитель, и данные, которые он хранит, являются временными (данные, хранящиеся в ОЗУ, удаляются при выключении компьютера), доступ к данным в ОЗУ возможен процессором вашего компьютера намного быстрее.

Если ваш процессор был вынужден читать и записывать данные непосредственно с жесткого диска и SSD вашего компьютера и на них, приложения и программы работали бы очень медленно. Итак, когда вы загружаете программу или приложение, важные данные этой программы или приложения сначала загружаются в память вашего компьютера. После загрузки в оперативную память данные, необходимые этим приложениям и программам, будут доступны быстрее.

Как выглядит оперативная память компьютера

Синхронное динамическое ОЗУ с двойной скоростью передачи данных (GDDR SDRAM)

GDDR SDRAM – это тип DDR SDRAM, специально разработанный для рендеринга видео графики, обычно в сочетании с выделенным графическим процессором (графическим процессором) на видеокарте. Современные компьютерные игры выходят за рамки невероятно реалистичной среды с высоким разрешением, часто требуя здоровенных системных характеристик и лучшего оборудования для видеокарт (особенно при использовании дисплеев с высоким разрешением 720p или 1080p).

Память видеокарты на чипах GDDR5 SDRAM

Подобно DDR SDRAM, GDDR SDRAM имеет собственную эволюционную линию (повышение производительности и снижение энергопотребления): GDDR2 SDRAM, GDDR3 SDRAM, GDDR4 SDRAM и GDDR5 SDRAM.

Несмотря на то, что у DDR ​​SDRAM есть похожие характеристики, GDDR SDRAM – не совсем то же самое. Существуют заметные различия в том, как работает GDDR SDRAM, в том что касается пропускной способности по сравнению с задержкой. Ожидается, что GDDR SDRAM будет обрабатывать огромные объемы данных (пропускную способность), но не обязательно на самых высоких скоростях (задержка).

Представьте себе шоссе с 16 полосами, установленным на 55 миль в час. Для сравнения, ожидается, что DDR SDRAM будет иметь низкую задержку, чтобы немедленно реагировать на процессор – вспомним двухполосную магистраль, установленную на 85 миль в час.

Способы проверки работоспособности

Естественно, RAM может давать ошибки, что бывает крайне редко. Но проверка таких ошибок и возможности их появления производится следующим образом (описание memtest и его настройки можно найти отдельно и эту программу, не смотря на высшую точность результатов, игнорируем):

  1. При запуске Windows (до начала загрузки) нажимаем F8. Чтобы появилось следующее окно.
  2. С помощью клавиши «Tab» (отмечена красным) переключаем на «Диагностика памяти» (отмечена зелёным) и нажимаем кнопку «Enter» ввод, чтобы запустить проверку.
  3. Процесс этот отнимает до 40 минут (бывает и больше, в зависимости от объёма RAM).
  4. Статус несколько раз будет доходить до 100%.

Эта процедура не гарантирует идеальной проверки и её результаты лучше всего контролировать через Memtest или в сервисном центре. Особенно если замечены какие-то ошибки в работе ОЗУ.

Разновидности

Различают компьютерную RAM двух основных видов: для ПК и для ноутбука. С точки зрения внешнего вида они отличаются существенно (размер, положение пазов), а вот с точки зрения микроэлектроники – различий не имеют.

Поэтому данный аспект классификации будет опущен. Просто будут поданы изображения ОЗУ указанного поколения для ПК и ноутбука.

DDR или DDR1. Имеет максимальный объём планок в 2 Гб. Цена на такую память только выросла, поскольку нередко она требуется для организаций, где не могут списать компьютеры, которые даже «барахлом» назвать не выходит.

Увы, работать хоть как-то нужно, поэтому найти и купить такую планку – огромная удача. Найти ноутбучный вариант на 2 Гб, сродни выигрышу в лотерею.

Примечание: На Aliexpress встречаются планки DDR1 на 4 Гб. Пожалуй, такое приобретение будет сомнительным.

DDR2. Более ходовой вариант, но тоже отживающий своё. Изменение используемых чипов и принципов передачи данных позволили повысить объём памяти в одной планке.

Цена ещё не успела подскочить, поскольку предложение в разы превосходит спрос. Максимальный объём планки до 4 Гб (встречается, но редко).

Примечание: Следует учитывать не только объём памяти и поколение ОЗУ, но и тактовую частоту. Некоторые сочетания частота/объём просто невозможны.

DDR3. На данный момент самый распространённый вариант. Устанавливается во все устройства. За пределы DDR3 выходят только чипы видеопамяти, где используется DDR5. Такая несправедливость вызвана необходимостью обеспечивать слот питанием. Видеокарты с DDR5 обладают дополнительным гнездом питания.

Максимальный объём памяти на одной планке 32 Гб (впрочем, есть информация о работе над планками со 128 Гб памяти).

Такие разновидности RAM можно встретить сегодня. Различаются они по поколению, используемым чипам, количестве чипов. Внешние различия заключаются в положении так называемого «ключа», который препятствует установки оперативки другого поколения в слоты для следующих.

Маленькое правило установки

Если в компьютер ставится дополнительная планка ОЗУ, то следует учитывать такие правила:

  • всегда парная. Не может быть числа планок 3 или 5. Использовать 1 планку не возбраняется. В зависимости от ситуации правилом можно пренебрегать, но рано или поздно попадётся программа, которая адресует обращение в несуществующий раздел памяти (туда, где должна быть зеркальная 4 планка), чем вызовет BSOD;
  • зеркальная установка. Планки ставятся в слоты с номерами 1-3 и 2-4. При этом планки должны иметь одинаковый объём памяти. Примечание аналогично предыдущему пункту. Особенно игры «любят ронять» систему такими обращениями;
  • «спасибо Asus». Эти изготовители в ряде моделей ноутбуков сделали 2 пустые планки и напаяли на материнскую плату основную ОЗУ. Повышение объёма RAM на таком ноутбуке часто становится пыткой и единого совета об этом нет. Перед покупкой ноутбука проверяйте в интернете гайды по его разборке.

Основные характеристики оперативной памяти

При выборе оперативной памяти, нужно обязательно учитывать следующие характеристики:

    • тип памяти,
    • форм-фактор,
    • ключ модуля памяти,
    • объём модуля ОЗУ,
    • тактовая частота,
    • тайминг.

Тип памяти

Скорость чтения/записи важный показатель оперативной памяти, именно поэтому идёт постоянная борьба за производительность ОЗУ. Технологии не стоят на месте, периодически появляются новые стандарты оперативной памяти, как правило, превосходящие своих предшественников по скорости в 2 раза. Наибольшее распространение получила синхронная динамическая память с произвольным доступом (SDRAM), эволюционная линейка которой выглядит следующим образом: DDR, DDR2, DDR3, DDR4, DDR5.

Форм-фактор модуля памяти

Планки оперативной памяти имеют различный форм-фактор исполнения в зависимости от того, где будет эксплуатировать ОЗУ в ноутбуке или компьютере. Форм-фактор оперативной памяти для стационарных компьютеров именуется DIMM, а для ноутбуков — SO-DIMM.

Ключ модуля оперативной памяти

Печатная плата (модуль/планка), на которой размещены чипы памяти, имеет специальный ключ (прорезь), в зависимости от типа SDRAM-памяти: DDR, DDR2, DDR3, DDR4, DDR5. Связано это с тем, что типы памяти не совместимы между собой.

Объём модуля памяти

Объём оперативной памяти, на ряду с характеристиками прочих комплектующих ПК, непосредственно влияет на производительность системы в целом. При достаточном объёме ОЗУ, операционная система реже задействует файл подкачки, что исключает лишние операции чтения/записи, которые проходят на более низких скоростях.

Объём одного модуля оперативной памяти, зависит от типа памяти.

Тип памяти Объём модуля памяти
Минимальный Максимальный
DDR 256 МБ 1 ГБ
DDR 2 512 МБ 4 ГБ
DDR 3 1 ГБ 16 ГБ
DDR 4 4 ГБ 128 ГБ

Тактовая частота оперативной памяти

Параметр зависит от типа оперативной памяти: DDR, DDR 2, DDR 3, DDR 4, DDR 5. Чем выше тактовая частота, тем лучше. Обязательно стоит учитывать характеристики процессора, который должен поддерживать соответствующую тактовую частоту ОЗУ.

Обязательно стоит учитывать режим работы — одно- или двухканальный. Если процессор способен работать с максимальной частотой определённого типа памяти в одноканальном режиме, он может не поддерживать данную частоту в двухканальном режиме. При этом, система запустится и будет работать, но на более низкой частоте.

Стоит отметить тот факт, что оперативная память, независимо от типа, в процессе своей работы поддерживает весь диапазон тактовых частот, расположенных ниже своей максимальной частоты. К примеру, максимальная тактовая частота модуля памяти DDR 4 2400 МГц — ОЗУ может работать на следующих частотах: 2400, 2133, 1866, 1600.

Частота, на которой запустится оперативная память (без учёта разгона) зависит от характеристик процессора, чипсета материнской платы и установленной видеокарты. Если, какой-то из компонентов системы будет «тормозить», то память не запустится на пределе своих возможностей.

Тип памяти Тактовая частота модуля памяти, МГц
Минимальная Максимальная
DDR 100 350
DDR 2 200 600
DDR 3 800 2400
DDR 4 1600 3200

Тайминг оперативной памяти

Тайминг или латентность — время задержки доступа к ячейкам памяти между операциями чтения/записи. Важный параметр оперативной памяти.

CAS Latency (CL) — Один из самых значимых показателей: именно он говорит, сколько времени в целом уходит на поиск необходимых данных после того, как ЦП попросит доступ на считывание. Чем меньше показатель CAS Latency, тем лучше.

RAS to CAS Delay (tRCD) — показатель демонстрирует время полного доступа к данным, то есть задержку, вызванную поиском нужного столбца и строки в двухмерной таблице. Чем меньше значение, тем выше быстродействие ОЗУ.

Row Precharge Delay (tRP) — ОЗУ — динамическая память, ее ячейки время от времени разряжаются и нуждаются в периодической перезарядке. По этой причине данные, которые содержатся в ней, обновляются. Это называется регенерацией ОЗУ. Таким образом, данный показатель в тактах отображает временной отрезок, проходящий между сигналом на зарядку — регенерацию ОЗУ — и разрешением на доступ к следующей строчке информации. Чем меньше этот параметр, тем быстрее работает память.

Activate to Precharge Delay (tRAS) — минимальное время активности строки, то есть минимальное время между активацией строки (ее открытием) и подачей команды на предзаряд (начало закрытия строки). Строка не может быть закрыта раньше этого времени. Высокий показатель данного параметра заметно сокращает производительность памяти, из-за того, что закрытие ячейки требует дополнительного времени, поэтому чем ниже значение tRAS, тем лучше.

Стандарт скорости модуля памяти

В обозначении для облегчения понимания скорости модуля указывается и стандарт пропускной способности памяти. Он как раз и показывает, какую пропускную способность имеет модуль.

Все эти стандарты начинаются с букв PC и далее идут цифры, указывающие пропускную способность памяти в Мбайтах в секунду.

Название модуля Частота шины Тип чипа Пиковая скорость передачи данных
PC2-3200 200 МГц DDR2-400 3200 МБ/с или 3.2 ГБ/с
PC2-4200 266 МГц DDR2-533 4200 МБ/с или 4.2 ГБ/с
PC2-5300 333 МГц DDR2-667 5300 МБ/с или 5.3 ГБ/с1
PC2-5400 337 МГц DDR2-675 5400 МБ/с или 5.4 ГБ/с
PC2-5600 350 МГц DDR2-700 5600 МБ/с или 5.6 ГБ/с
PC2-5700 355 МГц DDR2-711 5700 МБ/с или 5.7 ГБ/с
PC2-6000 375 МГц DDR2-750 6000 МБ/с или 6.0 ГБ/с
PC2-6400 400 МГц DDR2-800 6400 МБ/с или 6.4 ГБ/с
PC2-7100 444 МГц DDR2-888 7100 МБ/с или 7.1 ГБ/с
PC2-7200 450 МГц DDR2-900 7200 МБ/с или 7.2 ГБ/с
PC2-8000 500 МГц DDR2-1000 8000 МБ/с или 8.0 ГБ/с
PC2-8500 533 МГц DDR2-1066 8500 МБ/с или 8.5 ГБ/с
PC2-9200 575 МГц DDR2-1150 9200 МБ/с или 9.2 ГБ/с
PC2-9600 600 МГц DDR2-1200 9600 МБ/с или 9.6 ГБ/с
Тип памяти Частота памяти Время цикла Частота шины Передач данных в секунду Название стандарта Пиковая скорость передачи данных
DDR3-800 100 МГц 10.00 нс 400 МГц 800 млн PC3-6400 6400 МБ/с
DDR3-1066 133 МГц 7.50 нс 533 МГц 1066 млн PC3-8500 8533 МБ/с
DDR3-1333 166 МГц 6.00 нс 667 МГц 1333 млн PC3-10600 10667 МБ/с
DDR3-1600 200 МГц 5.00 нс 800 МГц 1600 млн PC3-12800 12800 МБ/с
DDR3-1800 225 МГц 4.44 нс 900 МГц 1800 млн PC3-14400 14400 МБ/с
DDR3-2000 250 МГц 4.00 нс 1000 МГц 2000 млн PC3-16000 16000 МБ/с
DDR3-2133 266 МГц 3.75 нс 1066 МГц 2133 млн PC3-17000 17066 МБ/с
DDR3-2400 300 МГц 3.33 нс 1200 МГц 2400 млн PC3-19200 19200 МБ/с

В таблицах указываются именно пиковые величины, на практике они могут быть недостижимы.

Синхронное динамическое ОЗУ (SDRAM)

SDRAM

  • Время на рынке: с 1993 года по настоящее время
  • Популярные продукты с использованием SDRAM: компьютерная память, игровые приставки

SDRAM — это классификация DRAM, которая работает синхронно с тактовой частотой процессора. В начале ожидает тактового сигнала, прежде чем
ответить на ввод данных (например, пользовательский интерфейс). DRAM считается асинхронным, так как немедленно реагирует на ввод данных.
Но преимущество синхронной работы состоит в том, что ЦП может параллельно обрабатывать перекрывающиеся инструкции, также известные как «конвейерная
обработка» — возможность получать (читать) новую инструкцию до того, как предыдущая инструкция полностью разрешена (запись).

Конвейерная обработка не влияет на время, необходимое для обработки инструкций, она позволяет одновременно выполнять больше инструкций. Обработка одной
инструкции чтения и одной записи за такт приводит к более высокой общей скорости передачи/производительности ЦП. SDRAM поддерживает конвейеризацию
благодаря делению памяти на отдельные участки, что и обусловило ее широкое предпочтение по сравнению с базовым DRAM.

Конструктивные исполнения DRAM

В зависимости от выполняемых задач модули динамической памяти DRAM выпускаются в различном исполнении:

SIPP – память в виде пластины, контакты которой представляют собой небольшие штырьки. Эта версия RAM уже не используется.

Рис. 5. Память SIPP.

  • SIMM, модули в виде длинных прямоугольников с контактными площадками вдоль одной стороны и защёлками для установки. Самые распространённые версии – с 30 и 72 контактами. Объём такой памяти, которая тоже сейчас не выпускается, был равен 256 КБ и 1–128 МБ.
  • DIMM – платы, контактные площадки на которых располагаются с двух сторон. Прямоугольные пластины, так же как и модули SIMM, устанавливаются с помощью защёлок. Расположение микросхем может быть и односторонним, и двухсторонним, а количество контактов – до 288 (для DDR4).
  • SO-DIMM – те же модули DIMM, но уменьшенного размера, предназначенные для установки в небольших корпусах ноутбука или системных блоках с форм-фактором Mini-ITX. Эти же платы стоят в принтерах и других видах техники, которой требуется для работы оперативная память. Количество контактов может достигать 260 (SO-DIMM DDR4).

Рис. 6. Отличия модулей DIMM и SO-DIMM.

Ещё один вариант DRAM – модули RIMM, которые из-за особенностей конструкции устанавливаются только парами, хотя сейчас практически не применяются. Память имеет 160, 168, 184 и 242 контакта. Существует уменьшенная разновидность этой «оперативки», SO-RIMM, предназначенная для портативных компьютеров.

Конструктивные исполнения DRAM

В зависимости от выполняемых задач модули динамической памяти DRAM выпускаются в различном исполнении:

SIPP – память в виде пластины, контакты которой представляют собой небольшие штырьки. Эта версия RAM уже не используется.

Рис. 5. Память SIPP.

  • SIMM, модули в виде длинных прямоугольников с контактными площадками вдоль одной стороны и защёлками для установки. Самые распространённые версии – с 30 и 72 контактами. Объём такой памяти, которая тоже сейчас не выпускается, был равен 256 КБ и 1–128 МБ.
  • DIMM – платы, контактные площадки на которых располагаются с двух сторон. Прямоугольные пластины, так же как и модули SIMM, устанавливаются с помощью защёлок. Расположение микросхем может быть и односторонним, и двухсторонним, а количество контактов – до 288 (для DDR4).
  • SO-DIMM – те же модули DIMM, но уменьшенного размера, предназначенные для установки в небольших корпусах ноутбука или системных блоках с форм-фактором Mini-ITX. Эти же платы стоят в принтерах и других видах техники, которой требуется для работы оперативная память. Количество контактов может достигать 260 (SO-DIMM DDR4).

Рис. 6. Отличия модулей DIMM и SO-DIMM.

Ещё один вариант DRAM – модули RIMM, которые из-за особенностей конструкции устанавливаются только парами, хотя сейчас практически не применяются. Память имеет 160, 168, 184 и 242 контакта. Существует уменьшенная разновидность этой «оперативки», SO-RIMM, предназначенная для портативных компьютеров.

Назначение и принцип работы

Основным назначением RAM является хранение временных данных, необходимых компьютеру только во время его работы.

В эту память загружаются данные, которые будут выполняться процессором напрямую.

К ним относят исполняемые файлы (в первую очередь, с расширением .exe) и библиотеки, результаты различных операций, которые выполняются в процессе работы ПК, и коды нажатых клавиш типа CapsLock, Ins и т.д.

Принцип работы RAM следующий:

  • Все ячейки памяти находятся в своих строках и столбцах;
  • На выбранную строку памяти приходит электрический сигнал.
  • Под действием сигнала открывается транзистор.
  • Присутствующий в конденсаторе заряд подаётся к нужному столбцу, подключённому к чувствительному усилителю;
  • Поток электронов, создаваемый разрядившимся конденсатором, регистрируется усилителем и приводит к подаче соответствующей команды.

Рис. 2. Общая схема обработки данных вычислительной техникой.

Важно: При подаче электрического сигнала на определённую строку открываются все её транзисторы. Отсюда следует, что минимальным объёмом данных, который считывается из памяти, является не ячейка, а строка

Из-за того что принцип действия RAM основан на полупроводниках, хранящиеся в этой памяти данные остаются доступными только при подаче электротока.

При отключении напряжения питание обрывается, а все данные в ОЗУ полностью стираются.

Что такое RAM?

Чтобы понять, что такое оперативная память, вам нужно узнать, что обозначает аббревиатура «RAM». В переводе с английского это значит «Память с произвольным доступом», или также «Оперативное запоминающее устройство» (ОЗУ). Говоря иначе, информация в такой памяти может быть прочитана и записана в любой момент, без необходимости ожидания выполнения ряда процессов.

Это значительно ускоряет поиск тех или иных данных, так как, в отличие от ROM-памяти или памяти формата microSD, можно быстро получить доступ к физическому местоположению, где хранится данные.

Особенности RAM-памяти

Оперативная память – это то место, которое любое устройство использует для заполнения какими-либо данными, например, операционная система, приложения, используемые по прямому назначению и те, которые работают в фоновом режиме. RAM – это хранилище, откуда процессор получает всю необходимую информацию напрямую.

Вот поэтому ОЗУ и процессор располагаются на единой платформе-модуле, которая припаяна к материнской плате. На изображении ниже вы можете увидеть материнскую плату Nexus 5X. Этот девайс имеет оперативную память на 2 гигабайта, процессор, отмеченный красным цветом, и внутреннюю память с оранжевой отметкой.

Чем больший объем RAM-памяти присутствует в вашем телефоне, тем лучше производительность и скорость работы девайса в целом, хотя это также зависит от типа памяти и качества сборки телефона.

Важный момент: оперативная память работает только тогда, когда устройство включено – то есть, такой тип памяти не способен хранить информацию после выключения девайса. Вот поэтому имеется небольшая задержка при включении смартфона, во время которой оперативная память подготавливается для работы с ОС устройства.

Виды оперативной памяти

На сегодняшний день существует множество видов RAM-памяти, которые различаются между собой по скорости чтения и потребляемой мощности. Самые первые сообщения об оперативной памяти появились в 60-х годах прошлого столетия, и с тех пор каждое новое поколение ОЗУ характеризовалось большей емкостью, скоростью и энергоэффективностью.

В наши дни в смартфонах используется особый вид RAM-памяти, называемый LPDDR. Такая память расходует очень мало энергии, с одной стороны, но с другой, она недешева. Наиболее распространены такие виды ОЗУ: LPDDR2, LPDDR3 и LPDDR4 – это последние три поколения оперативной памяти для мобильных устройств. Главное различие между ними состоит в том, что у каждого последующего поколения наблюдается удвоение скорости передачи данных.

Классификация и виды SDRAM в современных компьютерах

Наиболее распространенным подвидом памяти DRAM является синхронная память SDRAM. Первым подтипом памяти SDRAM является DDR SDRAM. Модули оперативной памяти DDR SDRAM появились в конце 1990-х. В то время были популярны компьютеры на базе процессов Pentium. На изображении ниже показана планка формата DDR PC-3200 SODIMM на 512 мегабайт от фирмы GOODRAM.

Приставка SODIMM означает, что память предназначена для ноутбука. В 2003 году на смену DDR SDRAM пришла DDR2 SDRAM. Эта память использовалась в современных компьютерах того времени вплоть до 2010 года, пока ее не вытеснила память следующего поколения. На изображении ниже показана планка формата DDR2 PC2-6400 на 2 гигабайта от фирмы GOODRAM. Каждое поколение памяти демонстрирует все большую скорость обмена данными.

На смену формата DDR2 SDRAM в 2007 году пришел еще более быстрый DDR3 SDRAM. Этот формат по сегодняшний день остается самым популярным, хоть и в спину ему дышит новый формат. Формат DDR3 SDRAM сейчас применяется не только в современных компьютерах, но также в смартфонах, планшетных ПК и бюджетных видеокартах. Также память DDR3 SDRAM используется в игровой приставке Xbox One восьмого поколения от Microsoft. В этой приставке используется 8 гигабайт ОЗУ формата DDR3 SDRAM. На изображении ниже показана память формата DDR3 PC3-10600 на 4 гигабайта от фирмы GOODRAM.

В ближайшее время тип памяти DDR3 SDRAM заменит новый тип DDR4 SDRAM. После чего DDR3 SDRAM ждет судьба прошлых поколений. Массовый выпуск памяти DDR4 SDRAM начался во втором квартале 2014 года, и она уже используется на материнских платах с процессорным разъемом Socket 1151. На изображении ниже показана планка формата DDR4 PC4-17000 на 4 гигабайта от фирмы GOODRAM.

Пропускная способность DDR4 SDRAM может достигать 25 600 Мб/c.

Флэш-память

Чип памяти внутри флешки

  • Время на рынке: с 1984 года по настоящее время
  • Популярные продукты, использующие флэш-память: цифровые камеры, смартфоны/планшеты, портативные игровые системы/игрушки

Флэш-память — это тип энергонезависимого носителя данных, который сохраняет все данные после отключения питания. Несмотря на название, флэш-память ближе по
форме и действию (то есть к хранилищу и передаче данных) к твердотельным накопителям, чем ранее упомянутые типы ОЗУ.

Флэш-память чаще используется в таких устройствах:

  • Флешки
  • Принтеры
  • Портативные медиаплееры
  • Карты памяти
  • Малая электроника/игрушки
  • PDAs

Что такое RAM-память

Одним из важнейших элементов любой вычислительной системы являются модули оперативного запоминающего устройства. Иногда их называют по-простому – RAM. Это сокращение произошло от первых букв английских слов Random Access Memory, что можно перевести как «Память со случайным доступом к любому своему блоку» или, что проще, ОЗУ (оперативное запоминающее устройство).

RAM-память используется для хранения данных, необходимых всем системам компьютера. Ключевая особенность, которую стоит запомнить, заключается в том, что после сброса или выключения вся сохраненная информация из ячеек стирается. Рассказывая о том, что же такое RAM-память, имеет смысл провести аналогию с мышлением человека. Например, необходимо выполнить сложение двух чисел. Человек удерживает в памяти одно число и, мысленно подставляя второе, осуществляет математическую операцию.

В вычислительных системах из оперативной памяти процессор выбирает данные, размещаемые там приложениями, а также туда же отправляет результаты обработки, впоследствии «забираемые» программами. Именно поэтому используется термин «оперативная», то есть необходимая для текущих операций.

Заключение. MRAM — что это, будущее?

Вполне возможно. Именно эта технология является лидером в списке альтернатив используемым ныне типам памяти. Причем использованием в автопромышленности, в устройствах интернета вещей, в мобильных устройствах, в качестве буферной памяти и т. п. дело не ограничится. Есть замашки и на вытеснение DRAM.

Четверка основных производителей готова в ближайшем будущем наладить выпуск микросхем памяти, использующих технологию STT-MRAM. Другое дело, готов ли рынок принять их. Да, достоинств у новой технологии много. Это и скорость работы, и долговечность, которая даже «не снилась» используемой ныне флеш-памяти. Но есть и недостатки, даже если сравнивать с NAND. Плотность расположения ячеек у STT-MRAM пока что ниже, чем у флеш-памяти. Да и техпроцессы, по которым может выпускаться новая память, пока что «толще», чем используемые при производстве NAND. Стоимость пока что тоже выше.

В то же время на рынке присутствует дефицит флеш-памяти, активно развивается тема многослойной NAND. В общем, быстрота перехода на новую память вызывает вопросы. И все же вероятность того, что именно STT-MRAM станет преемником, в первую очередь, флеш-памяти очень велика. А как там дальше будет – посмотрим.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector